Note: This unit is an archived version! See Overview tab for delivered versions.

AMME4971: Tissue Engineering (2018 - Semester 1)

Download UoS Outline

Unit: AMME4971: Tissue Engineering (6 CP)
Mode: Normal-Day
On Offer: Yes
Level: Senior Advanced
Faculty/School: School of Aerospace, Mechanical & Mechatronic Engineering
Unit Coordinator/s: Professor Zreiqat, Hala
Dr Li, Jiao Jiao
Session options: Semester 1
Versions for this Unit:
Campus: Camperdown/Darlington
Pre-Requisites: MECH2901 AND MECH3921.
Brief Handbook Description: With the severe worldwide shortage of donor organs and the ubiquitous problem of donor organ rejection, there is a strong need for developing technologies for engineering replacement organs and other body parts. Recent developments in engineering and the life sciences have begun to make this possible, and as a consequence, the very new and multidisciplinary field of tissue engineering has been making dramatic progress in the last few years.

This unit will provide an introduction to the principles of tissue engineering, as well as an up to date overview of recent progress and future outlook in the field of tissue engineering. This unit assumes prior knowledge of cell biology and chemistry and builds on that foundation to elaborate on the important aspects of tissue engineering.

The objectives are: To gain a basic understanding of the major areas of interest in tissue engineering; To learn to apply basic engineering principles to tissue engineering systems; To understand the promises and limitations of tissue engineering; To understand the advances and challenges of stem cell applications; Enable students to access web-based resources in tissue engineering; Enable students to develop basic skills in tissue engineering research.
Assumed Knowledge: None.
Lecturer/s: Dr Li, Jiao Jiao
Professor Zreiqat, Hala
Timetable: AMME4971 Timetable
Time Commitment:
# Activity Name Hours per Week Sessions per Week Weeks per Semester
1 Lecture 2.00 1 13
2 Tutorial 2.00 1 12

Attributes listed here represent the key course goals (see Course Map tab) designated for this unit. The list below describes how these attributes are developed through practice in the unit. See Learning Outcomes and Assessment tabs for details of how these attributes are assessed.

Attribute Development Method Attribute Developed
The students will be required to submit an assignment on a topic of their choice in tissue engineering. The students will be expected to identify a problem in the related field and discuss ways of providing tissue engineering solutions. Design (Level 3)
The students will be given lectures in specific areas of tissue engineering by leading experts in the their area of research. This will give the students a broad knowledge on the latest developments in Tissue Engineering. Engineering/IT Specialisation (Level 3)
Information literacy. This will be developed through the individual and group assessment activities. Literature survey of the latest research in tissue engineering. Information Seeking (Level 2)
Communication. This will be developed through the group presentations and tutorials. In tutorials, students will be divided into small groups and assigned papers to discuss. They will then present and discuss their findings and outcomes with the whole class. Communication (Level 2)
Experience through the group presentation and tutorial participation will provide training in team work, communication and presentation skills. Professional Conduct (Level 2)

For explanation of attributes and levels see Engineering & IT Graduate Outcomes Table 2018.

Learning outcomes are the key abilities and knowledge that will be assessed in this unit. They are listed according to the course goal supported by each. See Assessment Tab for details how each outcome is assessed.

Design (Level 3)
1. The students will each complete a group presentation and individual assignment on the applications of tissue engineering to body tissues, such as bone, cartilage, skin, neural, vascular and cardiac. In their assignment, they will discuss the medical need, latest advances and future directions in tissue engineering in their chosen field, identify key areas of shortcomings in the field and discuss possible solutions.
Engineering/IT Specialisation (Level 3)
2. To develop a theoretical understanding of the basic concepts of tissue engineering and be exposed to the various specific disciplines of this field. The students will develop specific expertise through the lectures given by invited speakers at the forefront of their research.
Information Seeking (Level 2)
3. Students will gain expertise by conducting a scientific literature review of the current progress in the field of tissue engineering in general. Specifically, they will undertake a thorough scientific search on the latest developments in the research conducted in their chosen assessment topics.
Communication (Level 2)
4. To achieve effective communication, students will complete a group presentation assessment. In tutorials, the class will be divided into small groups where each group will present their findings on assigned papers for discussion to the whole class. Students will communicate their ideas and critically evaluate their scientific findings.
Professional Conduct (Level 2)
5. Team work skills will be developed through the group presentation and tutorial participation. In the tutorials, each group will discuss the assigned papers in detail, decide on key points and then report back to the whole class.
Assessment Methods:
# Name Group Weight Due Week Outcomes
1 Group presentation Yes 25.00 Week 8 1, 2, 3, 4, 5,
2 Assignment * No 30.00 Week 12 (Friday, 5 pm) 1, 2, 3,
3 Final Exam No 35.00 Exam Period 2,
4 Attendance/Participation No 10.00 Multiple Weeks 4, 5,
Assessment Description: Presentation/Seminar: Group presentation on a tissue engineering topic

Assignment: Individual assignment on a tissue engineering topic

Final Exam: Final 2 hour closed-book exam


- There may be statistically and educationally defensible methods used when combining the marks from each component to ensure consistency of marking between markers, and alignment of final grades with grade descriptors.

- Lateness in submitting assignments past the due date and time will be penalised by 10% deduction of the mark obtained for the assessment per 24 hours late.

- The University has authorised and mandated the use of text-based similarity detecting software Turnitin for all text-based written assignments.
Grade Type Description
Standards Based Assessment Final grades in this unit are awarded at levels of HD for High Distinction, DI (previously D) for Distinction, CR for Credit, PS (previously P) for Pass and FA (previously F) for Fail as defined by University of Sydney Assessment Policy. Details of the Assessment Policy are available on the Policies website at . Standards for grades in individual assessment tasks and the summative method for obtaining a final mark in the unit will be set out in a marking guide supplied by the unit coordinator.
Policies & Procedures: Academic Honesty in Coursework. All students must submit a cover sheet for all assessment work that declares that the work is original and not plagiarised from the work of others.

Coursework assessment and examination policy. The faculty policy is to use standards based assessment for units where grades are returned and criteria based assessment for Pass/Fail only units. Norm referenced assessment will only be used in exceptional circumstances and its use will need to be justified to the Undergraduate Studies Committee. Special consideration for illness or misadventure may be considered when an assessment component is severely affected. This policy gives the details of the information that is required to be submitted along with the appropriate procedures and forms.

Special Arrangements for Examination and Assessment. In exceptional circumstances alternate arrangements for exams or assessment can be made. However concessions for outside work arrangements, holidays and travel, sporting and entertainment events will not normally be given.

Student Appeals against Academic Decisions. Students have the right to appeal any academic decision made by a school or the faculty. The appeal must follow the appropriate procedure so that a fair hearing is obtained.

Note that policies regarding assessment submission, penalties and assessment feedback depend upon the individual unit of study. Details of these policies, where applicable, will be found above with other assessment details in this unit outline.

All university policies can be found at

Various request forms for the Faculty of Engineering and IT can be found at

Note that the "Weeks" referred to in this Schedule are those of the official university semester calendar

Week Description
Week 1 Overview of Tissue Engineering
Week 2 Biomaterials in tissue engineering
Week 3 Research translation and commercialisation
Week 4 Scaffolds in bone tissue engineering
Week 5 Cements and fibres: special solutions for orthopaedic tissue engineering
Week 6 Biomedical engineering in burns: clinical reality
Week 7 Balancing 3D structure and function with dynamic assembly
Week 8 Cardiac regeneration for bioengineers
Assessment Due: Group presentation
Week 9 Space invaders: how cancer cells negotiate tissue barriers
Week 10 TheĀ future of cell and gene therapies
Week 11 Bioengineered Diabetes Therapy Project
Week 12 Synthetic Biosystems for 3D Modelling of Development, Disease and Regenerative Medicine
Assessment Due: Assignment *
Week 13 Course reflection and exam preparation
Exam Period Assessment Due: Final Exam

Course Relations

The following is a list of courses which have added this Unit to their structure.

Course Year(s) Offered
Biomedical Engineering / Law 2013, 2014
Biomedical Engineering / Arts 2013, 2014
Biomedical Engineering / Commerce 2013, 2014
Biomedical Engineering / Medical Science 2013, 2014
Biomedical Engineering / Project Management 2013, 2014
Biomedical Engineering / Science 2013, 2014
Biomedical Mid-Year 2016, 2017
Biomedical / Arts 2015, 2016, 2017, 2018
Biomedical / Commerce 2015, 2016, 2017, 2018
Biomedical / Medical Science 2015, 2016, 2017
Biomedical / Music Studies 2016, 2017
Biomedical / Project Management 2015, 2016, 2017, 2018
Biomedical /Science 2015, 2016, 2017, 2018
Biomedical / Science (Health) 2018
Biomedical - Chemical and Biomolecular Major 2015
Biomedical - Electrical Major 2015
Biomedical - Information Technology Major 2015
Biomedical / Law 2015, 2016, 2017, 2018
Biomedical - Mechanical Major 2015
Biomedical - Mechatronics Major 2015
Mechanical Engineering (Biomedical) / Medical Science 2010, 2011, 2012
Biomedical / Science (Medical Science Stream) 2018
Mechanical Engineering (Biomedical) / Arts 2011, 2012
Mechanical Engineering (Biomedical) / Commerce 2012
Mechanical Engineering (Biomedical) / Project Management 2012
Mechanical Engineering (Biomedical) / Science 2011, 2012
Mechanical Engineering (Biomedical) / Law 2012

Course Goals

This unit contributes to the achievement of the following course goals:

Attribute Practiced Assessed
Project and Team Skills (Level 3) No 0%
Design (Level 3) Yes 17%
Engineering/IT Specialisation (Level 3) Yes 46%
Information Seeking (Level 2) Yes 17%
Communication (Level 2) Yes 10%
Professional Conduct (Level 2) Yes 10%

These goals are selected from Engineering & IT Graduate Outcomes Table 2018 which defines overall goals for courses where this unit is primarily offered. See Engineering & IT Graduate Outcomes Table 2018 for details of the attributes and levels to be developed in the course as a whole. Percentage figures alongside each course goal provide a rough indication of their relative weighting in assessment for this unit. Note that not all goals are necessarily part of assessment. Some may be more about practice activity. See Learning outcomes for details of what is assessed in relation to each goal and Assessment for details of how the outcome is assessed. See Attributes for details of practice provided for each goal.