Note: This unit is an archived version! See Overview tab for delivered versions.

ELEC5735: Foundations of Control (2014 - Semester 2)

Download UoS Outline

Unit: ELEC5735: Foundations of Control (6 CP)
Mode: Normal-Day
On Offer: Yes
Level: Postgraduate
Faculty/School: School of Electrical & Computer Engineering
Unit Coordinator/s: Dr Shrivastava, Yash
Session options: Semester 2
Versions for this Unit:
Site(s) for this Unit:
Campus: Camperdown/Darlington
Pre-Requisites: None.
Brief Handbook Description: This unit is mainly concerned with the application of feedback control to continuous-time, linear time-invariant systems. It aims to give the students an appreciation of the possibilities in the design of control and automation in a range of application areas. The concepts learnt in this unit will be made use of heavily in many units of study in the areas of communication, control, electronics, and signal processing.

The following specific topics are covered: Modelling of physical systems using state space, differential equations, and transfer functions, dynamic response of linear time invariant systems and the role of system poles and zeros on it, simplification of complex systems, stability of feedback systems and their steady state performance, Routh-Hurwitz stability criterion, sketching of root locus and controller design using the root locus, Proportional, integral and derivative control, lead and lag compensators, frequency response techniques, Nyquist stability criterion, gain and phase margins, compensator design in the frequency domain, state space design for single input single-output systems, pole placement state variable feedback control and observer design
Assumed Knowledge: Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform.
Lecturer/s: Dr Shrivastava, Yash
Timetable: ELEC5735 Timetable
Time Commitment:
# Activity Name Hours per Week Sessions per Week Weeks per Semester
1 Lecture 2.00 1 12
2 Tutorial 2.00 1 8
3 Laboratory 3.00 1 4
4 Independent Study 2.00
5 500 word critical self-reflection essay 1.00 1
T&L Activities: Tutorial: Tutorials are devoted to practicing basic concepts covered in the lectures and understanding how more complex tasks can be handled by putting these basic concepts together. The focus is on active learning and the group work and discussion is encouraged. The students also get to present their solutions to the rest of the class.

Laboratory: Labs are devoted to hands on experience with real control systems. Students will do the modeling, make measurements and design control schemes for the lab equipment. They will also present their results in the format of lab reports.

Independent Study: Students need to do some preparation for tutorials and labs. they may also need to read the text and other references to fully master the basic concepts covered in the lectures.

Report - own time: Students would need to write a 500 word critical self-reflection essay. This would help students in identifying their own strengths and weaknesses and thus take charge of their learning.

Attributes listed here represent the key course goals (see Course Map tab) designated for this unit. The list below describes how these attributes are developed through practice in the unit. See Learning Outcomes and Assessment tabs for details of how these attributes are assessed.

Attribute Development Method Attribute Developed
Extensive design and analysis work is done in tutorials and labs. Engineering/IT Specialisation (Level 3)
Gain an ability to apply the principles of feedback control to electrical, mechanical, and biological systems. Maths/Science Methods and Tools (Level 3)
Need to read and understand the text, lecture notes, lab procedures. Information Seeking (Level 2)
Students need to work in groups and present their solutions to the rest of the class during tutorials. They also need to write lab reports and 500 word critical self-reflection essay. Communication (Level 3)
Apply self-evaluation techniques through independent critical self-reflection on learning. Professional Conduct (Level 2)
Group work in labs and tutorials. Project and Team Skills (Level 2)

For explanation of attributes and levels see Engineering & IT Graduate Outcomes Table.

Learning outcomes are the key abilities and knowledge that will be assessed in this unit. They are listed according to the course goal supported by each. See Assessment Tab for details how each outcome is assessed.

Design (Level 2)
1. Ability to conduct lab experiments and take measurements to perform a model identification for a particular engineering problem.
2. Ability to design and test feedback control schemes for the lab equipment to achieve different performance requirements.
Engineering/IT Specialisation (Level 3)
3. Ability to analyse the dynamic response of linear time invariant systems and the role of system poles and zeros on it.
4. Ability to simplify complex system consisting of interconnections of many linear subsystems.
5. Ability to determine the stability of feedback systems and their steady state performance.
6. Ability to design simple controllers to achieve stability and transient performance requirements using root locus, frequency response and state space techniques.
Maths/Science Methods and Tools (Level 3)
7. Ability to model physical systems (e.g. electrical, mechanical, and electromechanical systems) using state space, differential equations, and transfer functions.
Information Seeking (Level 2)
8. Ability to recognise the limits of the information presented in the lectures and target information searches through varied sources and formats so as to synthesise information relevant to the specific topic at hand.
Communication (Level 3)
9. Ability to make written and oral presentations in the form of lab reports, tutorial presentations, and critical self-reflection.
Professional Conduct (Level 2)
10. Ability to identify own strengths and weaknesses through self-reflection.
Project and Team Skills (Level 2)
11. Ability to work in a team to discuss and draw upon the ideas and knowledge of others to solve and present tutorial problems and conduct lab experiments.
Assessment Methods:
# Name Group Weight Due Week Outcomes
1 Labs Yes 7.00 Multiple Weeks 1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
2 Tutorials Yes 8.00 Multiple Weeks 3, 4, 5, 6, 7, 8, 9, 11,
3 Midterm Exam No 25.00 Week 9 3, 4, 5, 6, 7,
4 Final Exam No 57.00 Exam Period 3, 4, 5, 6, 7,
5 500 word critical self-reflection essay No 3.00 Week 13 9, 10,
Assessment Description: Tutorials and Labs: There will be 8 tutorials (of 2 hours each) and 4 laboratories (of 3 hours each) during the semester. Tutorials will include analytical problem solving sessions on the material covered in the lectures and computer aided solution / illustration. These sessions will give you the opportunity to explore the concepts in detail and are very helpful in understanding the material covered in the lecture. Please see the unit of study web page for the details of tutorial assessment scheme. It stresses the importance of your preparation work and enhances your communication skills. Besides this incentive, in my experience I have found that there is a direct correlation between the tutorial participation and the exam performance of the students. The solutions for the tutorials and computer codes will be available from the unit of study web page after the session.

Laboratories are designed to introduce you to basic feedback control concepts and measurements. They will require you to do system identification for lab equipment and implement/test a few standard controllers for it, model and simulate dynamic systems and controllers in Matlab. You will enjoy doing them. Students will work in groups of two or three, but will submit individual reports. Your measurements must be signed and dated by a tutor before the completion of the lab session. Each lab work/demonstration is worth 1%. You need to submit a brief written lab report (worth 3%) for at least one of four labs. The idea is to give you some experience in report writing. Only, your best lab report mark will be counted towards the final assessment.

Midterm Exam: The midterm exam is scheduled to provide you an assessment halfway through the semester and more importantly to give you a practice run for the final exam. It will be of the same format as the final exam (but of shorter duration). Again the solutions will be available on the unit of study web page after the exam. Both the midterm exam and the final exam will be based on the lecture material and tutorials. Both exams will be closed book and closed notes. They will test your conceptual understanding of the material. Any complex formulae needed, will be provided on the question paper.

Final Exam: Final Exam

500 word critical self-reflection essay: Students would need to write a 500 word critical self-reflection essay. This is due in week 13 and would help students in identifying their own strengths and weaknesses and thus take charge of their learning.
Assessment Feedback: Marked lab reports with detailed comments and Mid-Sem Exam will be returned to the students. Instant feedback is provided to students during tutorials.
Grading:
Grade Type Description
Standards Based Assessment Final grades in this unit are awarded at levels of HD for High Distinction, DI (previously D) for Distinction, CR for Credit, PS (previously P) for Pass and FA (previously F) for Fail as defined by University of Sydney Assessment Policy. Details of the Assessment Policy are available on the Policies website at http://sydney.edu.au/policies . Standards for grades in individual assessment tasks and the summative method for obtaining a final mark in the unit will be set out in a marking guide supplied by the unit coordinator.
Policies & Procedures: See the policies page of the faculty website at http://sydney.edu.au/engineering/student-policies/ for information regarding university policies and local provisions and procedures within the Faculty of Engineering and Information Technologies.
Prescribed Text/s: Note: Students are expected to have a personal copy of all books listed.
  • Control Systems Engineering
Online Course Content: Learning Management System (LMS) through MyUni

Note that the "Weeks" referred to in this Schedule are those of the official university semester calendar https://web.timetable.usyd.edu.au/calendar.jsp

Week Description
Week 1 Introduction and review of Laplace Transform.
Week 2 Modeling of physical systems.
Week 3 Modeling of physical systems and linearization of nonlinear systems.
Week 4 Time response of linear systems.
Week 5 System reduction.
Week 6 Stability of linear systems, Routh-Hurwitz criterion, and steady state errors.
Week 7 Steady state errors, sensitivity, and root locus techniques.
Week 8 Controller design using root locus.
Week 9 Midterm exam.
Assessment Due: Midterm Exam
Week 10 Controller design using root locus.
Week 11 Frequency response and Bode plots.
Week 12 Nyquist criterion for stability and controller design using frequency response techniques.
Week 13 Controller design using state space techniques.
Assessment Due: 500 word critical self-reflection essay
Exam Period Assessment Due: Final Exam

Course Relations

The following is a list of courses which have added this Unit to their structure.

Course Year(s) Offered
Master of Professional Engineering (Power) 2010, 2011, 2012, 2013, 2014
Master of Professional Engineering (Electrical) 2010, 2011, 2012, 2013, 2014

Course Goals

This unit contributes to the achievement of the following course goals:

Attribute Practiced Assessed
Design (Level 2) No 1.4%
Engineering/IT Specialisation (Level 3) Yes 72.4%
Maths/Science Methods and Tools (Level 3) Yes 18.1%
Information Seeking (Level 2) Yes 1.7%
Communication (Level 3) Yes 3.2%
Professional Conduct (Level 2) Yes 1.5%
Project and Team Skills (Level 2) Yes 1.7%

These goals are selected from Engineering & IT Graduate Outcomes Table which defines overall goals for courses where this unit is primarily offered. See Engineering & IT Graduate Outcomes Table for details of the attributes and levels to be developed in the course as a whole. Percentage figures alongside each course goal provide a rough indication of their relative weighting in assessment for this unit. Note that not all goals are necessarily part of assessment. Some may be more about practice activity. See Learning outcomes for details of what is assessed in relation to each goal and Assessment for details of how the outcome is assessed. See Attributes for details of practice provided for each goal.