Note: This unit version is currently being edited and is subject to change!
MECH1560: Introduction to Mechanical Engineering (2019 - Semester 1)
Unit: | MECH1560: Introduction to Mechanical Engineering (6 CP) |
Mode: | Normal-Day |
On Offer: | Yes |
Level: | Junior |
Faculty/School: | School of Aerospace, Mechanical & Mechatronic Engineering |
Unit Coordinator/s: |
Dr Lozzi, Andrei
|
Session options: | Semester 1 |
Versions for this Unit: | |
Site(s) for this Unit: |
https://elearning.sydney.edu.au/webapps/portal/frameset.jsp |
Campus: | Camperdown/Darlington |
Pre-Requisites: | None. |
Prohibitions: | AERO1560 OR MTRX1701 OR ENGG1800 OR CIVL1900 OR CHNG1108 OR AMME1960 OR BMET1960 OR ENGG1960. |
Brief Handbook Description: | Objectives: a) To develop an understanding of the role of Mechanical Engineers and the core concepts within the discipline. b) To understand the content of the degree structure and how the subjects are applied. c) To develop an understanding of a range of machining and manufacturing processes required to make mechanical components. Introductory Mechanical Engineering (60%): The subject introduces the core mechanical engineering concepts of design and mechanisms, intelligent systems, applied materials and fluid machinery. An overview is provided of the range of roles and the skills and knowledge required of a Mechanical Engineer. Emphasis is placed on the relationship between the subjects in the degree program and how they are applied by practicing engineers. Manufacturing Technology (40%): An overview of a range of processes related to the design and manufacture of aerospace components is provided through hands-on experience. Manufacturing Technology practical work is undertaken in: (a) Hand tools, Machining, and Welding - an introduction to basic manufacturing processes used to fabricate mechanical engineering hardware. Safety requirements: All students are required to provide their own personal protective equipment (PPE) and comply with the workshop safety rules provided in class. Students who fail to do this will not be permitted to enter the workshops. In particular, approved industrial footwear must be worn, and long hair must be protected by a hair net. Safety glasses must be worn at all times. (b) Solid Modelling - the use of computer aided design (CAD) tools to model geometry and create engineering drawings of engineering components. (c) Microcontrollers - ubiquitous in modern engineered products - will be introduced through experiential learning with development kits. |
Assumed Knowledge: | None. |
Additional Notes: | Limited Places due to TAFE component. Department Permission required for non-BE(Mech) students. |
Lecturer/s: |
Professor Ye, Lin
Dr Williamson, Nicholas Mr White, Kim A/Prof Jabbarzadeh, Ahmad Mr Briozzo, Paul Dr Kirkpatrick, Michael A/Prof Manchester, Ian Dr Lozzi, Andrei |
|||||||||||||||||||||||||
Timetable: | MECH1560 Timetable | |||||||||||||||||||||||||
Time Commitment: |
|
|||||||||||||||||||||||||
T&L Activities: | Lectures: one hour each week. Tutorial: 2 x one hour tutorials each week. To re-enforce lectures, plus exercises and assignments. Workshop: Workshop Sessions as described on your timetable (3 hours per week for 5 weeks) Independent Study: 6 hours per week. |
Attributes listed here represent the key course goals (see Course Map tab) designated for this unit. The list below describes how these attributes are developed through practice in the unit. See Learning Outcomes and Assessment tabs for details of how these attributes are assessed.
Attribute Development Method | Attribute Developed |
Introduction to the role of mechanical engineers. Introduction to the processes and equipment used in mechanical engineering. | (2) Engineering/ IT Specialisation (Level 3) |
Introduction to some analysis techniques and problem solving methods in statics, thermodynamics, and dynamics. | (4) Design (Level 2) |
Appreciate the various forms of information by researching text books, articles etc to be able to fully understand and solve assignment problems. Develop an ability to communicate effectively through assignments and reports. Devolop ability to lay out problems to improve communication. |
(6) Communication and Inquiry/ Research (Level 1) |
Develop an appreciation of the roles of an engineer and their relation to society through exposure to case studies and mechanical engineering machinery. | (8) Professional Effectiveness and Ethical Conduct (Level 1) |
For explanation of attributes and levels see Engineering & IT Graduate Outcomes Table 2018.
Learning outcomes are the key abilities and knowledge that will be assessed in this unit. They are listed according to the course goal supported by each. See Assessment Tab for details how each outcome is assessed.
(6) Communication and Inquiry/ Research (Level 1)Assessment Methods: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assessment Description: |
Coursework assessment 1: Function design & manufacture simple engine Coursework assessment 2: Statics & Dynamics assignment Coursework assessment 4: Computer aided design and drawing Coursework assessment 6: Fluid mechanic assignment Coursework assessment 7: Thermodynamic assignment. Coursework assessment 8: Professional Engineering practice Workshop Skills: Hand tools, machining, welding, fibreglassing, Solidworks & Arduino. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assessment Feedback: | Course Assessments 1 to 7 are handed in to the tutors at the end of the Friday tutorial, to be returned within 2 weeks. Feedback will be provided by the tutors Seminar - marks provided online the following week. Lecturer will provide general feedback in class the following week, and tutors/co-ordinator are available to provide detailed feedback on request. Workshop skills - components will be returned to students together with marking sheets. Demonstrators will provide specific feedback on request. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Grading: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Policies & Procedures: | See the policies page of the faculty website at http://sydney.edu.au/engineering/student-policies/ for information regarding university policies and local provisions and procedures within the Faculty of Engineering and Information Technologies. |
Online Course Content: |
A Canvas site is available with the resources for this Unit of Study: https://elearning.sydney.edu.au/webapps/portal/frameset.jsp |
Note on Resources: | To study for all assignments, it is recommended to refer to lecture notes and tutorial problems. |
Note that the "Weeks" referred to in this Schedule are those of the official university semester calendar https://web.timetable.usyd.edu.au/calendar.jsp
Week | Description |
Week 1 | Introduction to the course, Description of the ME degree, Careers in ME, Dimensions and Units |
Introduction to professional Engineering Experience | |
Week 2 | Examine parts and assembly of a simple engine |
Week 3 | Lecture: presentation of manufacturing methods |
Assessment Due: Engine function materials & manufacture | |
Week 4 | Lecture: Introduction to static |
Assessment Due: Statics | |
Week 5 | Assessment Due: problem in static and dynamics |
Assessment Due: Dynamics | |
Week 6 | Lecture/Tutorial: Engineering drawing & Design |
Week 7 | Lecture/Tutorial: Engineering Drawing & Design |
Week 8 | Tutorial: Engineering Drawing & Design |
Week 10 | Lecture/Tutorial: Review of CAD systems past present - future |
Assessment Due: Computer Aided Design, drawing practice | |
Week 11 | Lecture/Tutorial: Introduction to Fluidmechanics |
Week 12 | Lecture/Tutorial: Introduction to Thermodynamics |
Week 13 | Lecture: Professional Engineering practice |
Assessment Due: Professional engineering practices |
Course Relations
The following is a list of courses which have added this Unit to their structure.
Course Goals
This unit contributes to the achievement of the following course goals:
Attribute | Practiced | Assessed |
(6) Communication and Inquiry/ Research (Level 1) | Yes | 7% |
(8) Professional Effectiveness and Ethical Conduct (Level 1) | Yes | 0% |
(5) Interdisciplinary, Inclusiveness, Influence (Level 2) | No | 0% |
(4) Design (Level 2) | Yes | 18% |
(3) Problem Solving and Inventiveness (Level 2) | No | 0% |
(2) Engineering/ IT Specialisation (Level 3) | Yes | 75% |
These goals are selected from Engineering & IT Graduate Outcomes Table 2018 which defines overall goals for courses where this unit is primarily offered. See Engineering & IT Graduate Outcomes Table 2018 for details of the attributes and levels to be developed in the course as a whole. Percentage figures alongside each course goal provide a rough indication of their relative weighting in assessment for this unit. Note that not all goals are necessarily part of assessment. Some may be more about practice activity. See Learning outcomes for details of what is assessed in relation to each goal and Assessment for details of how the outcome is assessed. See Attributes for details of practice provided for each goal.